05.14.17

Will ViaSat’s Air Force One contract get trumped?

Posted in Aeronautical, Inmarsat, Operators, Services, ViaSat, VSAT at 12:51 pm by timfarrar

Back in June 2016 there was considerably excitement around ViaSat’s sole source $73M contract to provide connectivity for Air Force One and other senior leadership aircraft. The plan was to replace Boeing’s Ku-band BBSN (which has continued to operate ever since the commercial Connnexion-by-Boeing project was cancelled in 2006) with a dual Ka/Ku-band solution which could utilize the ViaSat Ka-band satellites within their coverage footprint and then switch back to Ku-band in other parts of the world.

I’m told that one reason this upgrade happened was that President Obama’s daughters complained that the connectivity on Air Force One compared unfavorably to the speeds available on other ViaSat-equipped aircraft they had flown on, and ViaSat ultimately received a sole source contract, with the US government purchasing a couple of dozen of ViaSat’s dual Ku/Ka antennas in addition to the airtime contract.

But I’ve heard rumors that the RF performance of this Ku/Ka antenna failed the WGS compatibility tests required by the Air Force, and so to date the US government has not installed these new terminals, and Air Force One is apparently still operating with the old Boeing system. Its unclear what the end result will be, or if this is an easily solvable problem, but ViaSat’s competitors (especially Inmarsat, which has successfully leased GX capacity to the DoD for manned surveillance missions in the Middle East) are now rubbing their hands with glee.

[UPDATE 5/15] A spokesperson for ViaSat states that this rumor “is inaccurate. ViaSat is on target with our testing and deliverables, per our DISA contract.”

The broader prospects for ViaSat’s Ku/Ka antenna also appear uncertain, with the only commercial customer to date being Virgin America, which is using a handful of terminals on its Hawaii routes. Virgin America’s new owner, Alaska Airlines, has announced its intention to replace its existing Gogo ATG solution with a high speed satellite solution, but some now think that Gogo’s recent lease of the AMC-4 satellite for Pacific coverage means it will win this business with 2Ku.

Its interesting to note that Gilat has also developed a Ku/Ka antenna, which Hughes will offer for roaming outside its own Ka-band coverage footprint. Will this antenna be better than ViaSat’s solution, and more broadly will a combined Ku and Ka antenna (which inevitably has a smaller aperture and more beam skew problems) be a realistic alternative to high performance flat panels like Gogo’s 2Ku? The answer to that question will dictate whether ViaSat and Hughes can provide competition in the long haul passenger aircraft market over the next few years, or whether Panasonic, Gogo and Inmarsat will continue to dominate that segment until all three ViaSat-3 satellites are launched in the early 2020s, by which time most airlines will already have made their choice of provider.

02.17.17

Cold feet?

Posted in Aeronautical, Broadband, Echostar, Eutelsat, Operators, Services, SES, ViaSat at 10:47 am by timfarrar

As we get closer to Satellite 2017, where major new deals and partnerships are often announced, it looks like a number of players may be getting cold feet about their future satellite plans. This may be partly attributable to fears that OneWeb will contribute to a eventual glut of capacity, now it has secured SoftBank as a lead investor and raised another $1.2B. Even though capacity pricing may have stabilized somewhat for now, its certainly the case that a satellite ordered now is likely to enter the market at a point when pricing is set to decline much further.

We’ve already seen a delay in Panasonic’s XTS satellite order, which was supposed to happen before the end of 2016. Ironically enough, Leo Mondale of Inmarsat said at the Capital Markets Day last October that he believed “Panasonic in Yokohama are a little wary of getting into the satellite business” and in the wake of the recent FCPA probe, Panasonic Avionics now has a new Japanese CEO.

Moreover, one way of viewing the recent announcement that Eutelsat will take its ViaSat JV forward (and include aero mobility, which was not part of the original agreement) is that Eutelsat no longer believes it will strike a deal to operate Panasonic’s XTS satellites. That’s a much better explanation than bizarre speculation that ViaSat is going to buy Eutelsat, especially when ViaSat is still struggling to fund its third satellite for Asia and is openly hinting that it will need US government contracts to close the business case. Eutelsat also seems to be cutting back elsewhere, with some speculation that the Ka-band broadband satellite previously ordered for Africa may now be repurposed for other (non-broadband) applications.

But the biggest news appears to be a pull back on SES’s part from the long rumored global Ka-band GEO system that I noted last summer. SES announced only a single satellite (SES-17) for the Americas in partnership with Thales last September, but had plans for two additional satellites, and it seemed increasingly likely that a partnership with EchoStar would be announced soon to fund this development. Now it seems that effort is on hold, leaving EchoStar without an obvious way forward to achieving global coverage (as it seems EchoStar considered but rejected the idea of buying Inmarsat last fall).

There are also other more speculative projects that need to show some progress to remain credible. When it was disclosed by the WSJ last month, SpaceX’s business plan for its satellite internet service was widely dismissed as laughably unrealistic. However, I believe that in fact this is not the business plan that corresponds to the current system design, and instead SpaceX will be seeking a large amount of US government money to fund its constellation. Compared to SpaceX and OneWeb, Telesat’s constellation ambitions have largely been ignored by commentators, despite Telesat’s priority claim to the Ka-band NGSO spectrum band. So Telesat therefore also faces pressure to secure external investors in the near term so that it can keep pace with OneWeb.

Now the question is whether caution amongst major existing players will make it harder for new entrants to move forward. Will it signal to investors that they should be cautious about investing in any satellite businesses? Or will it be perceived that new opportunities will face less competition from existing operators? The NewSpace community certainly seems to still be living in a bubble, despite the deeply negative implications of Google’s decision to abandon its efforts in satellite and hand over Terra Bella to Planet (not least because a sale to Google or other internet companies was seen as the most plausible exit for VC investors). So I look forward to seeing how much reality intrudes on the discussions at Satellite 2017.

08.01.16

Going global…

Posted in Broadband, Echostar, Financials, Inmarsat, Operators, Services, ViaSat at 10:50 am by timfarrar

In late July, EchoStar raised $1.5B in debt, to add to its existing $1.5B in cash and marketable securities. Echostar’s lack of obvious need for these additional funds has led to considerable speculation about what the company’s intentions are, including the possibility of an Avanti acquisition.

As an aside, Avanti is clearly in serious trouble, having leaked the possibility of an Inmarsat acquisition on Friday, in order to try and drum up more interest in its sale process, only to be rebuffed by Inmarsat today, with Inmarsat stating that “it has withdrawn from Avanti’s announced process and it is not considering an offer for the shares of Avanti.”

It seems very likely that there is no potential buyer for the company (otherwise the leak would not have been needed) and therefore Avanti will be forced to file for bankruptcy on or around October 1 when its next bond interest payment is due. Inmarsat would clearly be interested in certain Avanti assets, including Ka-band orbital slots for its I6 and I7 satellites and possibly the Hylas-1 satellite for additional European capacity, but these can be picked up in bankruptcy, likely for no more than $100M. And it is hard to imagine other mooted potential buyers, such as Eutelsat and EchoStar being more generous: Eutelsat has made it clear it does not intend to invest more in Ka-band satellites until they reach terabit-class economics, while Charlie Ergen’s past adversarial relationship with Solus and Mast (in DBSD, TerreStar and LightSquared) makes him very unlikely to bail out Avanti’s investors. At this point, it is therefore probable that there will be no buyer for Hylas-4, forcing Avanti’s bondholders to continue to fund its construction, if they want to avoid a NewSat-like situation, where the nearly completed satellite is simply abandoned and handed over to its manufacturer.

Returning to the question of what EchoStar intends to do with its $3B of cash, it seems that a response to ViaSat’s global ViaSat-3 ambitions is likely to emerge in the very near future. After all, Hughes announced Jupiter-1 in 2008 in response to ViaSat-1, and then pre-empted ViaSat-2 with its own Jupiter-2 announcement in 2013. EchoStar could do this in one of three ways:

1) EchoStar could build its own global satellite system. This seems like the least plausible option, because there will already be at least three global Ka-band systems (from ViaSat, Inmarsat and SES). However, if EchoStar decides it does not believe the fully global opportunity is large enough, it could decide to just build a North America focused Jupiter-3 satellite (which would likely have a capacity of at least 500Gbps, and would have competitive economics to ViaSat-3).

2) EchoStar could partner with another operator. This is very plausible, especially as SES seems poised to announce its own GEO system soon, and would be keen to offload risk to an anchor tenant. Its even possible that EchoStar could build Jupiter-3 for North America, and partner in a separate global coverage effort with somewhat lower capacity.

3) EchoStar could buy another operator. This would be the most radical option, with Inmarsat the obvious candidate. There are many challenges here, not least that EchoStar might not be able to afford to buy Inmarsat, but the fit would be perfect, enabling EchoStar to leapfrog ViaSat to fully global coverage today, while being able to backfill Inmarsat’s limited GX capacity with its own HTS satellites. Moreover, Ergen would clearly attach significant value to Inmarsat’s L-band spectrum assets, not least in the leverage he could obtain over Ligado’s efforts to become a competing source of terrestrial spectrum to DISH in the US.

There remain other possibilities, but these seem less likely to emerge in the near future. EchoStar could build out a terrestrial network to meet the buildout deadline for DISH’s AWS spectrum holdings, and lease it to DISH, but it would be odd to announce that before the incentive auction has finished. EchoStar also changed the disclosure about new business opportunities in its SEC filings earlier this year, noting that:

Our industry is evolving with the increase in worldwide demand for broadband internet access for information, entertainment and commerce. In addition to fiber and wireless systems, other technologies such as geostationary high throughput satellites, low-earth orbit networks, balloons, and High Altitude Platform Systems (“HAPS”) will likely play significant roles in enabling global broadband access, networks and services…We may allocate significant resources for long-term initiatives that may not have a short or medium term or any positive impact on our revenue, results of operations, or cash flow.

However, this new language appears to have related to Ergen’s discussions about a partnership with Google, which I noted previously, and Google appears to have opted for an alternative path for its wireless broadband buildout, with its recent acquisition of Webpass.

As a result, I think EchoStar is likely to push forward with its satellite broadband efforts in the next month or two, presenting a serious challenge for ViaSat. That means its certainly not the case, as Jefferies wrote in its coverage initiation on ViaSat today, that “ViaSat-2/3 will give [ViaSat] the best bandwidth economics in the world (for now) and a de facto monopoly in residential broadband”. Indeed, I’d predict that although ViaSat will undoubtedly grow its satellite broadband business in North America very substantially (by as much as a factor of two) over the next 5 years, its extremely unlikely to pass EchoStar in the total number of subscribers, especially given the lead to market that Jupiter-2 will have over ViaSat-2 during 2017.

07.15.16

Hopping mad…

Posted in Aeronautical, Broadband, Operators, Spectrum, ViaSat, VSAT at 2:28 pm by timfarrar

Its been interesting to hear the feedback on my new ViaSat profile that I published last weekend, especially with regard to ViaSat’s supposed technical advantages over the HTS competition. As I noted in the report, ViaSat has apparently been struggling with its beamhopping technology, reducing the capacity of its upcoming ViaSat-2 satellite from an originally planned 350Gbps (i.e. 2.5 times the capacity of ViaSat-1) to around 300Gbps at the moment.

However, even that reduced target may require extra spectrum to achieve, with ViaSat asking the FCC in late May for permission to use 600MHz of additional spectrum in the LMDS band. Fundamentally this appears to be due to the reduced efficiency that ViaSat now expects to achieve relative to that set out in its original beamhopping patent. The patent suggested that for a ViaSat-2 design (with only 1.5GHz of spectrum, rather than the 2.1GHz ViaSat now intends to use), the efficiency could be as high as 3bps/Hz on the forward link (i.e. 225Gbps) and 1.8bps/Hz on the return link (i.e. 135Gbps) for a total of 360Gbps of capacity. But at Satellite 2016, ViaSat’s CEO indicated that an efficiency (apparently averaged between the forward and return links) of only 1.5bps/Hz should be expected, no better than existing HTS Ka-band satellites and nearly 40% lower than ViaSat originally estimated.

A notable side-effect of this additional spectrum utilization (even assuming approval is granted by the FCC) is that new terminals will be required, including replacement of both the antenna and the modem for aircraft that want to make use of the extended coverage of ViaSat-2. That’s why American Airlines is waiting until the second half of 2017 for this new terminal to be developed, before it starts to install ViaSat’s connectivity on new aircraft.

While the FCC’s Spectrum Frontiers Order yesterday does contemplate continued use of the LMDS band for satellite gateways (though utilization by user terminals appears more difficult), it looks like other Ka-band providers intend to shift more of their future gateway operations up to the Q/V-band, rather than building hundreds of Ka-band gateways as ViaSat will need for its ViaSat-3 satellite. That decision could reduce the costs of competing ground segment deployments substantially, while retaining continuity for user links. Thus, as a result of the lower than expected beamhopping efficiency, it remains to be seen whether ViaSat’s technology will now be meaningfully superior to that of competitors, notably SES and Inmarsat who both appear poised to invest heavily in Ka-band.

SES gave a presentation at the Global Connected Aircraft Summit last month, depicting its plans to build three new Ka-band HTS satellites for global coverage as shown above, and the first of these satellites could be ordered very shortly, because as SES pointed out in its recent Investor Day presentation, it has EUR120M of uncommitted capex this year and nearly EUR1.5B available in the period through 2020.

Meanwhile Inmarsat is hard at work designing a three satellite Inmarsat-7 Ka-band system, with in excess of 100Gbps of capacity per satellite. Although the results of the Brexit referendum may complicate its efforts, Inmarsat is hoping to secure a substantial European Commission investment later this year, which would replace the four proposed Ka-band satellites that Eutelsat had previously contemplated building using Juncker fund money.

So now it appears we face (at least) a three way fight for the global Ka-band market, with deep-pocketed rivals sensing that ViaSat may not have all the technological advantages it had expected and Hughes poised to secure at least a 6 month (and possibly as much as a 9-12 month) lead to market for Jupiter-2 compared to ViaSat-2. Victory for ViaSat is far from certain, and perhaps even doubtful, but beyond 2020 Ka-band therefore appears very likely to be the dominant source of GEO HTS capacity.