Understanding the “satellite ping” conclusion…

Posted in Aeronautical, Inmarsat, Operators, Services at 9:06 pm by timfarrar

Over the last week a great deal of useful data has been accumulating in the comments section of my previous blog post on locating satellite pings from MH370 and I’ve greatly enjoyed all the input from many dedicated contributors across various fields of engineering and aviation. If you’re visiting for the first time then you might want to read my original primer on pings first.

In this post I’m going to try to distill this information and explain what we’ve been told today, since there is still plenty of confusion out there, and address one thing that we haven’t yet been told, but which should be able to be determined from the analysis that has been conducted. Note that the diagrams shown below aren’t mine – I’ve provided links to original sources in the supporting text.

Almost immediately after the plane disappeared, Inmarsat discovered that the satellite terminal on the plane had continued sending “pings” to the satellite every hour. This was in response to the Inmarsat network checking in with each terminal that it had not seen traffic from, in order to check that it was still connected to the network, just like the cellular network checks every so often that your phone is connected. In technical terms (from the Classic Aero specification), commenter GuardedDon described it well:

The ‘ping’ is a component of the Aero-L [or Aero-H] protocol where the GES [Inmarsat's Gateway Earth Station] attempts to check the ‘log-on’ state of previously logged on but apparently idle AES [the plane's Airborne Earth Station]. The GES determines the AES to be idle if a timer ‘tG6′ expires, tG6 is obviously the hourly period.
The GES transmits to the AES over the P channel & receives over the R channel. The initial response burst on the R channel is the timing datum transmitted by the AES ±300 μs of receiving the incoming frame on the P channel. All very deterministic to give us the range to AES from satellite using the Round Trip Timing.

The delay can be measured fairly accurately, since as noted above, the timing is specified to within ±300 μs. This calculation, from PPRUNE [Professional Pilots Rumor Network], shows that the difference in round trip delay between ping arcs 1 degree apart is around 600 μs at the relevant angle for MH370. Thus the location of each arc is known to within 1 or 2 degrees, depending on whether the satellite actually measures the round trip or one way delay to the aircraft.

The arc information was released to the public on March 15 and there was some confusion at that point about why part of the arc close to Malaysia was excluded. Possibilities included:
1) that the area had been checked by radar
2) that the plane’s minimum speed would have meant it could not have been that close to Malaysia
3) that another Inmarsat satellite over the Pacific would have received the signals in this excluded part of the arc.
This issue has still not been clarified, but of these it appears that a combination of the first and second explanations is the most plausible.

Inmarsat measured the arc positions each hour from 2.11am to 8.11am and the possible routes taken by MH370 can be estimated by assuming that the plane was flying at a constant cruise speed, and then noting that the distance between the points at which the plane crossed each successive arc is equal to the distance the plane traveled in one hour. That led to the NTSB’s two potential tracks for the southern route, published by AMSA on March 18, which included two different assumptions for the speed at which the plane was flying.

Several news organization have published purported ping arcs for the intermediate ping times, including CNN and the Washington Post. However, its important to realize that these arcs are not based on real data, and are purely illustrative, like the chart produced by Scott Henderson.

What was not stated initially by Inmarsat or the investigators was that each of the hourly arcs is further away from the satellite than the previous one. In other words the plane was moving away from the satellite continuously from sometime soon after the 2.11am ping. This statement was made by Inmarsat on Friday (and I have also confirmed it). Once this sequence becomes clear, then it becomes impossible for the plane to have flown out over the Indian Ocean and later have returned to the vicinity of Malaysia. It also has significance for additional reasons that will be discussed below. As Jeff Wise noted, this means that the plane flew only between the green arc (the pink dot where it was at 2.11am) out towards the red arc where the last ping was recorded.

To be more precise, since Inmarsat has indicated that the plane was outside the green arc by 3.11am, the plane did not continue on its northwesterly course for long at all after contact was lost by Malaysian military radar at 2.22am (enabling it to return outside the green arc before the 3.11am ping). That would be consistent with avoiding Malaysian radar, but heading south the plane would have very likely crossed Indonesian radar coverage (something that the Indonesians have denied).

This sequence of ping arcs led inexorably to either a northern or a southern track, but there was still some uncertainty about which one was correct. The analysis that Inmarsat undertook over the last week took into account that the I3F1 satellite is in a slightly inclined orbit, which moves north and south of the equator each day. In other words it is only station-kept in the east-west direction, not north-south. While this situation is often the case for old FSS satellites, where the fuel is nearly exhausted, even new MSS geostationary satellites do not use strict north-south stationkeeping because the beam width of a small L-band antenna is pretty wide and so accurate pointing is not required.

DuncanSteel noted that the satellite was actually north of the equator at the time in question and Inmarsat was able to use the fact that the satellite was moving relative to the aircraft to calculate the resulting Doppler effect that shifted the frequency of the ping as measured at the satellite. If the satellite was moving towards the south, then the frequency of pings from airplanes flying in the southern hemisphere would be shifted up in frequency, while the frequency of pings from airplanes in the northern hemisphere would be shifted slightly down in frequency.

Last week Inmarsat performed an analysis of pings received from other aircraft flying in the Indian Ocean region to confirm that this effect is consistent across all of these planes and therefore concluded that MH370 must have been to the south of the satellite at the time of the last ping, not to its north. This led up to today’s announcement that the plane must have crashed in the Southern Ocean.

Now for an interesting piece of information that does not appear to have been considered in detail. A pilot on PPRUNE pointed out that there are two different modes of operation of the 777 flight management computer. A programmed route will take a straight line (great circle) route to the next programmed waypoint, but if there is no longer any waypoint in the computer, then the plane will fly on a magnetic bearing. While this is not material around Malaysia, it becomes highly significant in the Southern Ocean.

As a result, a magnetic heading would need to start out going significantly further west (and would also fly much further) to end up at the same point as a great circle route.

It is easy to see that in combination with Jeff Wise’s chart of the ping lines, a magnetic bearing heading is highly unlikely to have resulted in the 3.11am ping arc lying outside the 2.11am ping arc. Once this is realized, the hypothesis that the plane suffered an accident that left it flying on autopilot becomes rather less likely than the plane being deliberately directed towards a part of the southern ocean where presumably whoever was in charge believed the aircraft would never be found.

Indeed the NTSB tracks appear to implicitly assume an absolute not a magnetic heading, so would require the plane to be flying in a pre-programmed direction. Of course we need to see the ping arcs themselves (or at least get absolute confirmation about the trend in the ping arcs) before reaching a definitive conclusion, but this issue appears quite significant for any assessment of what might have happened onboard MH370.

UPDATE (Mar25): The Malaysia government has just released this full picture of the potential southern route tracks. The red track appears to be a magnetic bearing heading which would have required a slower speed (400 knots) and would result in a location far to the northeast of previous estimates. The yellow track is apparently the originally assumed programmed heading at cruising speed of 450 knots and is consistent with the current search area. There is clearly an enormous difference in where the plane ended up.

UPDATE (Mar25): The Doppler shift data release by the Malaysian government gives full details of the ping times (note that they are in UTC so add 8 hours for local Malaysian time which is used above). Several pings were received at just before 2.30am, then at 3.40am, 4.40am, 5.40am, 6.40am and 8.11am, not at 2.11am, 3.11am, etc as surmised above.

It seems clear from the Doppler information that the plane made a sharp turn very shortly after it was lost from Malaysian radar coverage at 2.22am. There is also much more time for the plane to move outside the 2.30am arc by 3.40am so this does not impose as much of a constraint on the possible routes of the plane.

The question has been raised about the apparent “partial” ping shortly after the 8.11am ping was recorded. Was that a partial ping because the plane lost power during the course of that handshake? Its hard to tell, but I note that there were several pings quite close together around 2.30am after the “possible turn”. Those appear to have occurred for a different reason than the regular pings (and also from the more frequent earlier handshakes after take off which I assume relate to regular ACARS messages being transferred).

So an understanding of why those occurred is likely to shed some light on why a ping might have been attempted so soon after 8.11am. In particular, could it have been initiated from the plane’s terminal rather than the satellite network? And if so why – for example, could it be due to the plane’s terminal trying to re-establish contact with the satellite after a sharp change in direction?


Locating “satellite pings”…

Posted in Aeronautical, Inmarsat, Operators, Services at 11:30 am by timfarrar

As a follow-up to my post on understanding satellite pings, I thought it would be helpful to give a bit more detail on how the location of a ping can be identified. In my previous post I indicated that you could potentially measure range (based on timing) or angle (based on power). After some further thought, it is likely that the range measurement would be much more accurate, not least because a change in angle (e.g. a plane banking) would throw off the power measurement significantly. The determination of a “measurable distance” is also what David Coiley of Inmarsat described in an interview with the New York Times last week.

How does this measurement happen, and how accurate is it? The first thing to understand is that the pings are sent to the satellite in a specific “time slot”, which has a given frequency and start time, but the burst of energy in the signal might not always be exactly in the center of the slot. This is illustrated very well in a recent Inmarsat patent, which shows the variation between three different bursts B1 to B3 which are scheduled in the same frequency (f1) and successive time slots (T1-T3).

How much the burst is offset in time relative to the center of its designated timeslot gives a measurement of range, since the further the terminal is away, the longer the energy will take to reach the satellite. How much the burst is offset in frequency relative to the center of its designated timeslot gives a measurement of speed, since if the terminal is traveling towards the satellite, the frequency will get higher and if it is traveling away from the satellite, the frequency will get lower (this frequency offset is the Doppler effect).

So in the illustration above, B2 is shifted both in time (range) and frequency (speed), whereas B3 is shifted in frequency (speed) but not in time (range).

UPDATE: One complicating factor is that if the Doppler correction takes place only in the terminal itself, then it is possible that the network may not see much if any frequency shift for the ping that is returned from the terminal. I am trying to confirm how this aspect is handled.

I should also note that it would not necessarily be expected to be standard operating procedures for a satellite operator like Inmarsat to save the precise time/frequency offset associated with each burst received by its satellites. But since the precise time data appears to have been used in the range calculation, it seems logical to conclude that this information (and potentially the associated frequency offsets as well if these are available, although this was not mentioned in a CNN interview today) must have been recorded.

Key point 1: It is likely to be feasible to calculate the range and possibly also the speed relative to the satellite from the ping information via the time/frequency offset method described above.

What we’ve seen in terms of the arcs of possible locations so far just represent the range component of this measurement. It seems that there is no triangulation involved (which is consistent with the CNN interview), because in this particular coverage region the specific frequencies involved are only used on the Inmarsat 3F1 satellite and not on any other satellites.

Its much harder to interpret the speed component (if it is available), because it is the speed relative to the satellite. So if the terminal was moving along one of these arcs, it would not be getting closer to or further away from the satellite and there would be no frequency shift. So in that situation the signal would look the same as from a plane that was stationary on the ground at the time of the transmission. If this information is actually available would expect Inmarsat to have been able to interpret the frequency shift as well as the time shift, but even then there would be no easy way to illustrate “relative speed” on a chart like the one given above.

Key point 2: Speed relative to the satellite is not the same as absolute speed, so (even if this information were available) it would not be possible to determine with certainty if the plane was on the ground and stopped.

Similarly, comparable data has not been released for previous “pings” before the last one. Whether or not the frequency/speed data is available, I would expect that it should be possible to determine that some points on the arcs above are more likely than others, but even with both pieces of information it is unlikely to eliminate any points completely unless other information is known (or assumed). For example, if one assumed that the plane flew at a constant speed and bearing then it would be possible to narrow down the locations quite significantly (because the speed and range would change in a predictable way, although north/south ambiguity would remain). However, that may or may not have been the case.

UPDATE: Similarly, one could test the theory about “following another aircraft” because the track of the other aircraft is known and its position would have to coincide with the arcs calculated for intermediate pings while this “following” was in progress.

Key point 3: The combined information from multiple pings would potentially be fairly dispositive as to whether the plane flew at a constant speed and bearing (i.e. on autopilot), although there might still be some uncertainty in the ultimate location (and north/south ambiguity) unless speed information was also available. The intermediate pings would also determine whether the “following another aircraft” theory is feasible.

So now for the big question, how accurate is the location of this arc. Without the ability to triangulate between multiple satellites, then geolocation accuracy (i.e. the ability to identify where on Earth a signal is being transmitted from) is considerably reduced, but a single satellite geolocation detector from Glowlink is said to have an accuracy of 40-60 miles. However, that detector may use more measurements (of a static source) than is possible with this limited number of pings from a terminal that is moving around. So I would expect my initial estimate of say 100 miles is still fairly reasonable. Its also important to remember that the plane could have had enough fuel onboard to have flown as much as a couple of hundred miles after the last ping.

Key point 4: The range accuracy is unlikely to be much better than 100 miles, and perhaps more because the plane could have continued flying after the last ping.

UPDATE: This is the latest search area, as shown by Reuters Aerospace News, including up to 59 minutes of potential travel after the final ping (i.e. the full period before the next hourly ping, regardless of remaining fuel).

UPDATE (Mar18): The Australian Maritime Safety Authority has held a press briefing today at which they described exactly the procedure outlined above for the southern route, i.e. assuming a constant speed and heading and correlating the results from all of the pings. They have produced the following map based on NTSB analysis showing that there only two paths consistent with the set of arcs and a constant speed/heading assumption. They declined to speculate on the northern route but indicated in the press briefing that similar analysis had been conducted. Presumably therefore it is now known whether or not the “following another aircraft” theory is feasible.

UPDATE (Mar 19/20): This evening, CNN put the image below on screen, showing purported ping arcs and the overlap with one of the projected southern tracks. It is not known if these are accurate locations, or if the image was purely illustrative. However, if the arcs are accurate, then (if the debris is a false lead) the “shadowing” hypothesis can be ruled out because the plane would not have gone far enough out into the Bay of Bengal. Moreover, if the plane is found in the southern search area having traveled along one of the projected paths, then it was flying in a straight line at constant speed (as AMSA and NTSB previously assumed in making these projections) and so was not likely to have been under active pilot control when it crashed. In addition, if the plane is found in the identified search area so quickly, it will intensify the scrutiny of the delays in making use of the ping information which Inmarsat provided very early in the investigation.

UPDATE (Mar 20): As noted by a commenter, the Washington Post published 3 of the earlier ping arcs in a graphic shown below. These are quite similar to the ping arcs depicted by CNN, suggesting that if the 4.11am ping arc is as close to the 5.11am arc as suggested by the CNN graphic, the “shadowing” hypothesis for the northern route is likely to be infeasible.


Understanding “satellite pings”…

Posted in Aeronautical, Inmarsat, Operators, Services at 11:55 am by timfarrar

There’s so much confusion about the satellite communications aspects of the MH370 incident that I thought it would be useful to give a little bit of background and an analogy to aid understanding of what we know and what we don’t. As with all analogies, this is perhaps oversimplified, but may help those without a detailed knowledge of satellite communications. I’m not a satellite designer, so I may also have overlooked some of the intricacies – please feel free to chime in with any corrections or amplifications.

Firstly, it needs to be made clear that the radar transponder “squawks” and the satellite communications “pings” are from completely separate systems (just because its talking about a transponder, that is nothing to do with satellite transponders). The radar transponder sends an amplified signal in response to reception an incoming radar transmission, which has much more power than a simple reflection from the metal skin of the plane, and has additional information about the plane’s ID. If turned off, less sensitive civilian radar will struggle to pick up the plane’s reflection, though military (air defense) radar should still be able to see the plane. But military radar systems are looking for hostile forces and have missed civilian aircraft in the past (e.g. the Mathias Rust incident).

Key point 1: The transponders are nothing to do with the satellite communications system.

So let’s turn to the satellite communications system. There has been talk about ACARS transmissions for monitoring the status of the plane. That is a communications protocol, separate from the underlying satellite (or VHF radio) link. Think of ACARS as like Twitter. I can send a message from my cellphone, which may or may not include my location. When I’m at home, on WiFi, the message goes to Twitter via my home broadband connection. Similarly, when the plane is over land, the ACARS message goes over VHF radio to SITA, who then send it on to the destination (e.g. Rolls Royce if the purpose is engine monitoring, Malaysian Airlines if its an internal airline message, or the Air Traffic Control center if its a navigation related message). [ACARS messages can also be sent over long distances via HF radio, but its not been suggested that was the case on MH370.]

With Twitter, when I leave home, my cellphone connects to the cellular network, and my Twitter messages go over that. But it makes no difference to the message and Twitter doesn’t care. Somewhat similarly, when the plane goes over the ocean, the ACARS system sends its messages over the plane’s satellite connection instead, but it doesn’t affect the content of the message.

Just like I use AT&T for my cellphone service, the plane’s satellite communication system is from Inmarsat, but so long as I have bought the right data service from AT&T, Twitter will work, and so long as I have an Inmarsat data service, ACARS will work fine.

Key point 2: ACARS is an “app” (communications protocol) which can operate over different (satellite and VHF) communications links.

I can sign out of Twitter on my cellphone and then won’t be able to transmit or receive Twitter messages. But that has nothing to do with whether my cellphone is connected to AT&T’s network. Similarly, the pilots can terminate ACARS sessions and stop reporting their position or other data (see for example this document), but that doesn’t affect whether the satellite terminal itself is connected to the Inmarsat network.

Key point 3: ACARS reporting can be disconnected without affecting the underlying satellite communications link.

On my cellphone, even if I’m not sending any data, AT&T needs to know if I’m registered on the network. When I turn on my phone, or move from cell to cell, the network exchanges data with the phone to make sure the network knows which cell the phone is located in. More importantly, even if I stay in one place with the phone in my pocket, the cellphone network checks in occasionally to make sure that the phone is still active (and say the battery hasn’t run out without the phone signing off from the network, or I haven’t gone into an underground car park and the connection has been lost), so that it knows what to do with an incoming call. You don’t normally notice that, because the timescales are pretty long (you don’t usually go into a car park for an hour or two). As another example, if I go to France with my AT&T phone, when I turn the phone on, it is registered in the Visitor Location Register (VLR), but eventually, after I stop using the phone there, my details are purged from the VLR.

Similarly with the Inmarsat connection, the network needs to know if it should continue to assign network resources to a particular terminal in case a communications link needs to be established. Not every aeronautical terminal in the world will be active simultaneously, and indeed there are quite a few that are rarely if ever used, so Inmarsat doesn’t provision resources for all terminals to be used simultaneously. However, once a given terminal are turned on, it needs to be contactable while it is inflight. So the Inmarsat network checks in with the terminal periodically (it appears to be roughly once an hour), to ensure that it should continue to be included in the list of active terminals and gets a message back to confirm that it should remain registered. These are the “satellite pings” that have shown that MH370 was still powered on and active after the ACARS messages and radar transponder were turned off, because the terminal was responding to the requests from the Inmarsat network to confirm it was still connected.

Key point 4: The “satellite pings” are due to the Inmarsat network checking that the terminal on board the aircraft is still connected to the Inmarsat satellite system and the terminal responding in the affirmative.

So now the question is how accurately does the Inmarsat network know where the plane is located? To go back to my cellphone analogy, when the network is checking my phone is still connected, it looks in the last cell it was registered. If I move to a different cell, then my phone should check in with the network to request a new assignment. But AT&T doesn’t need to know my precise position within the cell, it just needs to know where to route an incoming call. Similarly with Inmarsat, there isn’t a need to know exactly where in a cell the plane is located, just that its there and not somewhere (or nowhere) else.

Key point 5: The “satellite pings” indicate the plane is in a cell, but do not intrinsically give specific position information.

How big is a “cell” on the Inmarsat network and why the confusion? First of all, we need to recognize that there are different Inmarsat network architectures for different generations of aeronautical terminals. Think of it like 2G, 3G and 4G phones. If I have a first generation iPhone then I can only use 2G (GSM+EDGE), an iPhone 3G can use 3G, and an iPhone 5 can use LTE. AT&T supports all of these phones, but in slightly different ways. Inmarsat introduced a new SwiftBroadband aeronautical service in 2010, using its latest generation Inmarsat 4 satellites (like AT&T’s LTE network). That has much smaller spot beams (“cells”) than the older Inmarsat 3 satellites. And the Inmarsat 3 satellites (like AT&T’s 3G network) in turn have regional spot beams as well as a “global” beam (covering an entire hemisphere) to support the oldest aeronautical terminals.

As an aside, part of the SwiftBroadband communications protocol (essentially identical to BGAN) conveys (GPS-based) position information to the satellite when establishing a connection, so that the satellite can assign the terminal to the right spot beam. But it isn’t clear that GPS data is required as part of the “pings” which maintain registration on the network. That was one additional source of confusion about whether the specific position was being reported.

In any case, it appears that MH370 had a Swift64 terminal onboard (or possibly an older Aero-H or H+ terminal), not one of the latest SwiftBroadband terminals (that’s hardly surprising since SwiftBroadband is not yet fully approved for aeronautical safety services and is mostly used for passenger connectivity services at the moment, which don’t seem to have been available onboard). This is the equivalent of the iPhone 3G (or the original iPhone), not the newest version.

In the Indian Ocean, Inmarsat’s Classic Aero services, which are provided over both Swift64 and Aero-H/H+ terminals, operate on the Inmarsat 3F1 satellite located at 64E (equivalent to AT&T’s 3G network not its latest LTE network), and can use both the regional and global beams, but it appears that Inmarsat’s network only uses the global beam for the “pings” to maintain network registration. Otherwise it would have been possible to rule out a location in the Southern Ocean.

Key point 6: The “satellite pings” were exchanged with the Inmarsat 3F1 satellite at 64E longitude through the global beam.

So how can anyone find the position within this enormous global beam? There are two potential ways to measure the location:
1) Look at the time delay for transmission of the signal to the satellite. This would give you a range from the sub-satellite point if measured accurately enough, which would be a circle on the Earth’s surface.
2) Measure the power level of the signal as received at the satellite. The antennas on the satellite and the plane amplify the signal more at some elevation angles than others. If you know the transmission power accurately enough, and know how much power was received, you can estimate the angle it came from. This again would produce a similar range from the sub-satellite point, expressed as a circle on the Earth’s surface.

[UPDATE: I believe that the first of these approaches is more likely to produce an accurate estimate. See my new blog post for more information on locating satellite pings.] We can see in the chart below (taken from a Reuters Aerospace News photo of the search area posted at the media center) that the search locations are based on exactly these curves at a given distance from the sub-satellite point. However, it is unlikely that the measurements are more accurate than within say 100 miles.

We can also see that the arcs are cut off at each end. The cutoff due east of the sub-satellite point may be due to the fact that the transmissions would also potentially be received by Inmarsat’s Pacific Ocean Region satellite at that point, and if they weren’t, then that region would be ruled out (although others have suggested that military radar plots have already been checked in these regions). Its possible that the boundaries to the north and south have been established similarly by the boundaries of Inmarsat’s Atlantic Ocean Region satellite coverage, but they may instead be based on available fuel (or simply the elapsed time multiplied by the maximum speed of the plane), rather than the satellite measurements per se.

UPDATE (Mar 18): I originally attributed the picture below to a Malaysian government release, based on information from a journalist in Kuala Lumpur. As a commenter below notes, the diagram was put together based on an interpretation of what was stated in a briefing (indicating that the ends of the arcs were determined based on the minimum and maximum speed of the aircraft, rather than being based on the overlap of the Inmarsat satellite coverage areas) and is not an official document. Apologies for any confusion.

Key point 8: The position of the aircraft is being estimated based on the signal timing/power measured at the satellite. Its not based on the data content of any message and is not highly accurate.

ADDITIONAL POINT (Mar 17): Many have asked why it took so long to figure out where these satellite pings were coming from. Taking an extension of the analogy above, assume you have a friend staying in a hotel. The hotel catches fire and burns to the ground and your friend’s regular Twitter updates cease. For the first few days, the fire department is trying to find his body in the hotel. When he can’t be found the police check to see when his iPhone was last turned on. It turns out the phone was still connected to AT&T’s network hours after the fire. So then the police ask AT&T to figure out where the phone was operating by looking at their database of network records.

That’s exactly the sequence of events here. The plane’s ACARS (and radar) communications suddenly ceased and in the first few days, everyone assumed there had been a crash and was looking for the crash site. After no debris was found, investigators started to look at other possibilities. Inmarsat discovered the plane’s terminal was still connected to their network even after the ACARS messages ceased. Then it took a bit more time to calculate the location of the pings from Inmarsat’s network data records.

Finding missing people this way using cellphones is well known, but no-one’s ever had to do it before in the aeronautical satellite world, so its hardly surprising that this would be not be standard practice in an air accident investigation. I’m sure it wasn’t standard practice for cellphone companies in the 1980s either.

UPDATE (Mar20): The WSJ is reporting that Inmarsat had this information very quickly but the Malaysian government delayed making use of ping arc data to revise the search area for several days.

I hope that’s helpful. Let me know of any questions or need for further explanation.


Busman’s holiday…

Posted in DISH, Financials, Inmarsat, LightSquared, Operators, Regulatory, Spectrum, Thuraya at 9:35 am by timfarrar

Back in 2009, only a year before it embarked on the original $1.2B and now $1.6B Global Xpress Ka-band project (this new figure implicitly includes the launch of the fourth I5 satellite), Inmarsat’s CEO was happy to tell investors that “We are going into a period of capex holiday”. So perhaps it was inevitable that earlier this month at Inmarsat’s Q4 results presentation, some analysts were worried about the “risk that CapEx in 2015 won’t come down by the $300M figure you’ve mentioned”.

It does seem they were right to be concerned, because its now being reported (and I’ve confirmed) that Inmarsat and Arabsat are negotiating the inclusion of an S-band payload on Hellas Sat 3, similar to the Solaris piggyback payload on Eutelsat W2A.

I’m told that Inmarsat is now actively applying for national licenses to preserve its rights to 2x15MHz of S-band spectrum in Europe, after turning down an offer from Charlie Ergen to buy the license from them (in fact Ergen met with Rupert Pearce, Inmarsat’s CEO, in Washington DC this week). Inmarsat was previously exploring the development of an Air-To-Ground (ATG) network using this spectrum in Europe, but that has been abandoned, because it proved impossible to resolve the regulatory issues in the short timeframe available before the license deadlines (for a satellite launch) expire.

The new S-band business plan is instead directed at “smaller, cheaper terminals” for traditional MSS services (an opportunity that Inmarsat’s CEO highlighted on the MSS CEO panel that I moderated at Satellite 2014) rather than terrestrial exploitation of the spectrum. Another potential reason for Inmarsat’s move is that Thuraya will be trying to secure backing for a replacement L-band satellite over the next year, and by teaming up with Arabsat, Inmarsat could look to undermine Thuraya’s pitch that having an MSS satellite from the Middle East is a matter of regional pride.

In fact, Inmarsat was very firm at the conference that MSS spectrum should not be reallocated for terrestrial use, and even described the LightSquared Cooperation Agreement as something they were “forced” into (implicitly by the FCC), with Inmarsat’s preoccupation being to protect their MSS users from interference. This was quite a striking signal that Inmarsat may not be very supportive of compromise with LightSquared, which is a condition of the current bankruptcy exit plan.

In particular, Inmarsat is sitting on about $260M of deferred revenues, which were paid by LightSquared prior to the bankruptcy, to pay Inmarsat for fitting filters to its existing terminals (as I’ve noted before Inmarsat concluded this wasn’t actually required, so they kept the money). If Global Xpress revenues don’t ramp-up as quickly as expected (and there is now a high likelihood that the third I5 satellite will not be launched this year, since its not even on the latest Russian schedule and the second satellite is currently listed as launching in September), then the easiest way for Inmarsat to meet the 8%-12% wholesale revenue CAGR from 2014-16 that it reiterated on the Q4 results (which requires an increase of $200M to $300M in absolute terms) would be to book most if not all of those deferred revenues in 2016.

Of course, that is actually supportive of Ergen’s original proposal to just use the LightSquared uplink spectrum, because filters would only be required if the downlink band is actually used for terrestrial services. On the other hand, because Inmarsat would want to book the deferred revenues in 2016, rather than 2014 or 2015 when the bankruptcy process is complete, it seems plausible that Inmarsat would agree to an additional two year deferral of most payments from April 2014 to early 2016, aligned with the assumptions in LightSquared’s latest plan that FCC approval would be received by the end of 2015 and that their new funding would last through the first quarter of 2016.

At that point, if LightSquared has made no progress with the downlink band and is forced to fall back on uplink only use of the MSS spectrum, Inmarsat could book the deferred revenues and potentially could even get some additional payments for leasing the uplink spectrum at a later date. Don’t forget that Ergen might still be on the scene as well, since the deadline for completion of what will now likely be two competing European S-band projects is also in the first half of 2016.

So now we move to the key hearings next week in the LightSquared bankruptcy case, which will address the adversary proceeding against Ergen and LightSquared’s plan for emergence. As I’ve noted previously, despite the evidence LightSquared has marshaled about Ergen’s strategic objectives for his investments, it would be a major step for the judge to allow LightSquared to put Ergen/SPSO in a class of his own, then designate his vote and give him a third lien note with no exit for 7 years (and potentially no value in the absence of FCC approval). However, no one seems clear about what the judge will do, and what any compromise ruling might entail.


Kissing off Charlie…

Posted in DISH, Financials, Inmarsat, LightSquared, Operators, Regulatory, Spectrum at 3:47 pm by timfarrar

LightSquared’s Valentine’s Day message to Charlie Ergen was neither short nor sweet, with the filing of an 883 page long third amended bankruptcy plan on Friday night. The new plan no longer requires FCC approval of LightSquared’s license modification application before emergence, because as I pointed out last month, the FCC’s intervention had made LightSquared’s previous contingent plan untenable.

LightSquared has instead delayed the assumed timetable for FCC approval until December 31, 2015, and at this stage plans to raise enough money to carry the company through the first quarter of 2016. That will include a new $1.65B DIP facility, which will be sufficient to pay off all of the existing creditors of LightSquared (including accrued interest) with the exception of Ergen/SPSO. The new DIP facility would be expected to close at the end of March 2014, so the creditors wouldn’t even have to wait for the company to emerge from bankruptcy.

Because of the lack of FCC approvals, LightSquared can’t raise enough new money to pay off all of its debts, and so the plan involves subordinating Ergen/SPSO’s debt in the form of a third lien 7 year note, paying PIK interest at 12%. Ergen’s debt would rank behind a $1B first lien exit facility (which could be increased by another $500M after FCC approval of the license modification) and a second lien LP facility which would include $930M from the planned $1.65B DIP financing.

Of course, there is little incentive for Ergen to agree to this proposal, and even if the judge decides to approve the plan, including the new DIP financing, I would expect that LightSquared’s emergence from bankruptcy could be delayed while appeals take place (the current expectation is for the plan to become effective on or before October 31, 2014).

Importantly, LightSquared won’t have to make any payments to Inmarsat until it emerges from bankruptcy, and the plan contemplates that “the Inmarsat Agreement shall have been amended in a manner acceptable to the Lenders, which amendment shall include an extension of the period for election of spectrum and corresponding deferral of payments in respect thereof acceptable to the Lenders.”

However, LightSquared’s attempts to subordinate SPSO’s debt holdings are not based solely on the pending adversary proceeding, in which Ergen and Falcone testified in January. Instead LightSquared is seeking to designate SPSO’s vote, based on the DBSD precedent, which of course also involved DISH (disclosure: I testified as an expert in that case).

That Second Circuit ruling was based on deterring “attempts to ‘obtain a blocking position’ and thereby ‘control the bankruptcy process for [a] potentially strategic asset’ (as DISH’s own internal documents stated)” although it “[left] for another day the situation in which a preexisting creditor votes with strategic intentions” (which SPSO might be, because at least some of its purchases were made before LightSquared filed for bankruptcy). In addition, DBSD doesn’t address whether a debtor is able to divide one class of its debt into two so that there is only one creditor in a subclass, who can be treated differently from the rest of the class once that creditor’s vote is designated. Importantly, if the vote of the sole creditor in a class is designated, then (under DBSD) there then is no need to provide that creditor with “the indubitable equivalent” of its claims, as would otherwise be required under the “(more arduous) cram-down standards of §1129(b)”.

That’s why LightSquared is presenting allegations in the new bankruptcy plan which attempt to match the DBSD findings as closely as possible, stating that:

“LightSquared and the Supporting Parties believe that Ergen Entities’ inequitable scheme – which was outlined to the DISH board in a May 2, 2013 presentation – began when SPSO, which is controlled by Ergen, acquired LightSquared LP secured bank debt and preferred stock to influence these Chapter 11 Cases. The parties further believe that the evidence at trial contradicted the Ergen Entities’ contention that SPSO purchased LightSquared LP’s debt solely as an investment. Rather, the evidence demonstrated that SPSO’s acquisition was a scheme to control LightSquared’s bankruptcy process and to facilitate a spectrum acquisition option by DISH. Among other things, Ergen’s and Stephen Ketchum’s testimony demonstrated that (a) the Ergen Entities paid a third percent (30%) premium on what Ergen believed the debt was worth in order to obtain a blocking position, (b) obtaining a blocking position was an early objective, and (c) the Ergen Entities’ equated the blocking position with facilitating the acquisition of LightSquared’s spectrum assets.

LightSquared and the Supporting Parties further believe that, in the next phase of the Ergen Entities’ concerted scheme, shortly after SPSO had acquired a blocking position, Ergen caused LBAC to make a bid for substantially all of LightSquared LP’s assets, a bid that Ergen designed to be particularly attractive to LightSquared LP’s other secured lenders by consisting of an amount sufficient to pay LightSquared LP’s secured debt in full, and conditioning payment only on Hart-Scott-Rodino approval. The Ergen Entities, however, were already contemplating ways in which they could pay less than the agreed purchase price for the LightSquared LP assets if no other bids materialized. This tactic – reverting at a later date with an altogether different bid – was also outlined in the May 2, 2013 presentation.”

So now the question is whether Judge Chapman will go along with LightSquared’s plan, agree to treat SPSO’s debt as a separate class and designate SPSO’s vote. One argument that SPSO is likely to make is that it should not be in a separate class from other LP debtholders (in which case designation of its vote would become irrelevant, because the LP debtholders are being paid in full in cash). And of course, we will certainly hear a very different explanation of the developments described above.

I also wonder if Ergen will make an offer to purchase LightSquared through SPSO in an attempt to provide an alternative for the judge, perhaps at a price of roughly $2B as he tentatively offered last summer (although a lower offer of say $1.7B, or face value for the debt, might be plausible in view of the regulatory risk that the FCC introduced with its intervention last month). Remember that Ergen testified last month that he had considered bidding himself, by borrowing against his stake in EchoStar.

However, an offer by DISH seems unlikely, in view of DISH’s focus on other opportunities, and the fact that it would complicate Ergen’s defense against LightSquared’s allegations of an “inequitable scheme…to pay less than the agreed purchase price”. Indeed the defense would be stronger if DISH entered an alternative deal, providing the judge with a coherent rationale for the abandonment of its LightSquared bid.

In summary, it looks like it will be at least another month before there is any certainty about what happens to LightSquared. In the meantime, the H-block auction has been fairly quiet, with only a very slow rise in the total bids (to reach just below $1.5B at the end of Round 96 today). This afternoon, the pattern of new bids has changed somewhat, suggesting that DISH is mostly bidding against itself right now, and its remaining opponent(s) may have as little as a few hundred thousand bidding units of eligibility left. Once the auction is complete (which may finish on Friday or drag on until early next week) then I expect we’ll hear a lot more speculation about what else DISH has in mind and perhaps even a deal ahead of the confirmation hearing on LightSquared’s latest plan.


GOing to FIght about it?

Posted in Globalstar, Handheld, Inmarsat, Iridium, Operators, Services, Thuraya at 4:20 pm by timfarrar

Last week, at its partner conference, Iridium announced the launch of its new GO! product, which will provide the ability to relay calls and data to and from a smartphone via WiFi, at a reported retail cost of $700-$800. Iridium is looking to boost its revenues from handheld data (i.e. email, texting, etc.) which to date have been fairly modest in the satellite phone market, and will offer lower cost bundles of data minutes, including unlimited packages for intensive users. Indeed, one of the likely use cases is on yachts and fishing boats, which don’t need a full blown high speed data solution. This is slightly different to Thuraya’s SatSleeve, which is more likely to stimulate incremental voice usage, because the SatSleeve is physically attached to an iPhone or Samsung S3/S4 phone and so is easier to use for voice communications.

Globalstar also threw its hat in the ring, pre-empting Iridium’s announcement with the Sat-Fi, which is “expected to receive final FCC certification…during the second quarter of 2014, with shipments starting shortly thereafter.” Globalstar has had a “puck-like” device on its roadmap for several years, but has always wrestled with whether it is worthwhile to invest in product development for a product based on its existing Qualcomm air interface, with a potentially limited lifespan, or if it is better to wait for the new Hughes chipsets in 2015, which will offer improved data capabilities and will be supported throughout the lifetime of the second generation constellation.

Its therefore interesting to note that (according to my sources) the Sat-Fi will be based on the Qualcomm GSP-1720 voice and data module rather than the Hughes chipset. This suggests that Globalstar either perceives a large near term opportunity, which would justify making the investment now, or was particularly focused on spoiling Iridium’s announcement. Iridium clearly thinks it was the latter, and doesn’t believe that the Sat-Fi is actually “real”.

Globalstar has kept details of the Sat-Fi pretty quiet (although it filed a patent application on some aspects of the concept two years ago), and none of the MSS distributors I’ve spoken to seems to know much about the size, price or market positioning of the Sat-Fi device. However, despite Globalstar’s greater focus on the consumer market, it does not appear likely that Sat-Fi would sell in significantly higher volumes than Globalstar’s existing satellite phones, assuming a comparable price point. Indeed estimates that there might be 150K hotspots in use by 2022 would represent only 10%-20% of the expected satellite phone market in that timeframe.

I’m sure this will be make for a fascinating discussion during the MSS CEO panel at Satellite 2014 and perhaps even a return to some of the contentious debates of prior years. Ironically, the barbs being thrown around over the GO! and Sat-Fi don’t fully reflect the competitive landscape in the MSS industry, with Iridium and Globalstar focusing to a significant degree on different distribution strategies, target customers, and (to some extent) geographies.

In that context, both could be successful in different parts of the market, which would make this much like prior arguments over Inmarsat’s ISatPhone Pro and its supposed advantages over Iridium (reflected in the Gabby Wonderland video produced by Inmarsat’s marketing agency in 2010). In that case Inmarsat’s initial belief was that the ISatPhone Pro would hurt Iridium’s satellite phone business significantly, but in reality Iridium continued to dominate the higher end of the MSS handheld market (and sold more satellite phones than Inmarsat at much higher equipment margins), while Inmarsat expanded the low end of market instead.


Be what you want to be…

Posted in Globalstar, Inmarsat, Iridium, LDR, Operators, Orbcomm, Services at 11:02 am by timfarrar

In my view the announcement of a partnership between Orbcomm and Inmarsat on Monday evening may represent a sea change for the MSS industry, as Orbcomm showed how its planned “multi-network operator strategy” could eventually lead to it getting out of the business of operating its own satellite fleet, allowing Orbcomm to be what it wants to be: a solutions provider rather than a satellite operator.

In the short term the deal means that Orbcomm will invest in developing a new low cost Inmarsat ISatDataPro (IDP) module, costing around $100 (i.e. aiming to be less expensive than Iridium’s SBD module) which OEMs and VARs can choose to drop into their terminals as a direct alternative to Orbcomm’s own OG2 module, using a common management interface provisioned by Orbcomm.

The choice of module will be up to the OEM, and will depend on their data needs (IDP has higher capacity and less latency, because there will sometimes be several minute gaps in coverage between the 17 OG2 satellites), the geographies they will serve (Inmarsat will provide access to Russia and China) and the price they are willing to pay (IDP service will be more expensive than the current Orbcomm $5-$6 OEM ARPUs). Note that this is somewhat different than Orbcomm’s arrangement with Globalstar, under which Orbcomm’s Solutions business offers a Globalstar tag to retail customers (and existing Comtech VARs), but Globalstar will not be a direct alternative for Orbcomm’s OEM customers (who buy from Orbcomm’s Devices and Products business).

In the longer term it seems to me that (although this is not part of the current agreement with Inmarsat) Orbcomm will very likely not build a third generation of LEO VHF satellites, as the nature of their network (where the LEO satellites search actively for channels that are free of interference as they orbit the Earth) would be very difficult to consolidate onto an Inmarsat GEO platform. Because Orbcomm will have access to Inmarsat capacity on an I6 constellation which will last into the 2030s, eventually (in a decade or more) Orbcomm could instead migrate its customer base onto Inmarsat’s L-band services, so that it will not have to spend hundreds of millions of dollars on another round of fleet replenishment. In fact, if Orbcomm has any substantial launch problems with OG2 (remember that the satellites from its last two launches have been lost) it might not even make sense to reinvest the insurance proceeds in replacement satellites and conceivably such a migration could take place more quickly.

The significance of this announcement is that it appears to represent the first step towards a reduction in the amount of capex being invested in the rather slow growing MSS market. The next question will be whether, when Inmarsat orders its I6 L-band satellites (likely in late 2014 or early 2015), it opts for a copy (or even a simpler version) of the I4 constellation, and thus whether, as I suggested last year, we really have now reached the “end of history” in the MSS L-band industry. After all, with the sale of the Stratos energy business to RigNet (and a likely disposal of Segovia), Inmarsat is now backing away from its strategy of going direct, and is continuing to focus on maritime price rises to boost revenues, in accordance with the other part of my “end of history” thesis.



Posted in Financials, Globalstar, Handheld, Inmarsat, Iridium, LDR, Maritime, Operators, Services at 9:33 am by timfarrar

I won’t belabor the errors of physics in the movie, instead just noting that even though you might think that in space things can keep going in a straight line indefinitely, they are still subject to gravity and you can’t get to a higher orbit without some form of propulsion.

We’ve now seen confirmation from Iridium of what I pointed out last week, that Q3 was very bad for the MSS industry. Iridium missed its expectations for equipment revenues (i.e. handset sales) and subscriber growth (i.e. M2M net adds), although at least the government contract renewal is more favorable than expected – the unlimited nature of the contract removes the incentive for the DoD to scrub its user base to remove unused handsets, which has been a headwind for Iridium in the last couple of years.

Its far from clear that anyone else is doing better: it looks like Iridium’s competitors also saw pretty poor handset sales in Q3 and the SPOT 3 has been very slow to arrive in stores as well. Moreover, the government business is dire – Intelsat’s profit warning (which included its off-net business reselling MSS) is a bad sign for Inmarsat, as are the large scale layoffs in Astrium’s government business last week.

Inmarsat has now followed up its promise not to raise FleetBB prices in 2014 with an enormous 48% rise in maritime E&E prices from January, in an attempt to sustain maritime revenue growth next year. While the stated intention is to persuade the remaining pay as you go customers to move off the E&E network and choose FleetBB instead, the vast majority of higher spending B and Fleet customers have already migrated and many of the remaining users are mini-M voice-only users or really want the PAYG service because they are only occasional users, so FleetBB is not necessarily the ideal option.

Inmarsat is clearly calculating that these customers won’t want to risk moving to Iridium after the OpenPort problems earlier this year and has stepped up its efforts to portray Iridium’s network as “failing”. Despite all this, no-one believes that Inmarsat could possibly achieve its 8%-12% revenue growth target for 2014 and I expect this to be “softened” in the near future as well. Inmarsat is also likely to emphasize its opportunities for internal cost savings next year and move to dispose of some retail business units like Segovia.

Its interesting to speculate about implications for the wider satellite industry as well. Last time around (in 1999-2003), problems in the MSS industry were a harbinger of a downturn in the FSS industry a couple of years later. That came in the wake of a peak in satellite orders in the 1999-2001 timeframe and after the launch of these satellites, which resulted in a sharp decline in prices, the FSS industry took a big hit. We’ve seen a similar peak in orders in recent years (2009-10), and while the major operators are much more likely to retain pricing discipline (in a far more consolidated industry than a decade ago), the advent of High Throughput Satellites, especially those owned by smaller players like Avanti (who might become the most desperate for contracts), could pressure prices in certain market segments and geographies.

Just as an example, in recent years, underlying transponder demand has grown at roughly 4% p.a., but revenues have been boosted by around 2% p.a. by price rises. Even if demand growth continues (not a foregone conclusion in some sectors like government where WGS is an alternative), a reversal of the pricing trend would certainly make a big difference to the FSS revenue outlook. As I said at the beginning of this post, gravity clearly exerts a force, even in space.


Wretched, isn’t it?

Posted in Financials, Globalstar, Government, Handheld, Inmarsat, Iridium, LDR, Operators, Orbcomm, Services at 10:03 am by timfarrar

Incredible…it’s even worse than I thought

That’s been the reaction to my 57 page Globalstar profile, released on Friday (you can see the contents list here and get an order form here), because of the history of challenges that the MSS industry has faced in the past and more particularly the difficulties that the industry is seeing this year.

After discussions with a number of people in the industry over the last few weeks, it looks like Q3 has been pretty disastrous for MSS sales across the board, with none of the usual surge in demand expected in the summer months, as customers stock up to prepare for outdoor adventures or potential hurricanes. Part of that relates to slow government orders, as a result of the sequester (predating the current shutdown), but commercial demand has also been poor, and that’s much harder to explain.

In the handheld segment, one suggestion is that Hurricane Sandy proved that terrestrial cellphone networks are now considerably more reliable during disasters (and far more data capable than MSS phones), so companies are no longer giving as high a priority to MSS equipment in their disaster planning. In the M2M segment, a fairly convincing explanation is that service providers who formerly specialized in MSS are now focusing more and more on selling cellular-based solutions to customers who find they don’t need MSS as a backup.

As a result, I’m now convinced that subscriber growth (and equipment sales) will fall short of expectations this year, particularly in the handheld and M2M segments, for almost all of the major MSS players, with knock-on effects for subscriber revenues in Q4 and more particularly next year. The defense business also looks poor (as shown by Intelsat’s recent profit warning): the word on the street is that Inmarsat may dispose of its Segovia government FSS business, as revenues in Inmarsat’s US Government business unit fell by 11% year-on-year in the first half of 2013 and appear to have eroded further in recent months, particularly in Segovia’s VSAT business. The sale price would be a fraction of what Inmarsat paid for Segovia, but in exchange Inmarsat would hope to secure a GX airtime contract, similar to its RigNet deal in the energy sector.

In the case of Globalstar, the implications of the MSS downturn are that while Globalstar should be able to meet the new bank case revenue forecasts, it won’t be easy to beat them. However, unlike some other players, Globalstar is fortunate in having the potential upside from monetizing its spectrum, if it can complete a deal with Amazon or another company. The report looks at spectrum valuation for both LTE and TLPS and concludes that there could be substantial value for Globalstar, although realizing this will require both rapid approval from the FCC and for a deal to be struck fairly quickly, before new spectrum bands such as 3550-3650MHz develop an alternative ecosystem at what will likely be much lower prices. If you are interested in getting a copy, please contact me for more details.


Oh puck!

Posted in Financials, Globalstar, Handheld, Inmarsat, Iridium, Operators, Regulatory, Services, Spectrum at 9:32 am by timfarrar

Why didn’t Phil think of this first?

With MSS revenues in a bit of a funk this year, its not surprising that MSS operators are pursuing opportunities to attract consumers and expand the voice market outside the traditional verticals. We saw this first of all with Thuraya’s SatSleeve, announced at the Satellite 2013 conference in March. The SatSleeve connects via Bluetooth (and in the latest version WiFi) to an iPhone allowing the customer to use their iPhone contacts and touch screen interface. However, a key limitation is the need for compatibility of the sleeve with a particular phone form factor, and Thuraya has just launched a new version of the SatSleeve compatible with the slightly larger iPhone 5 handset rather than the original iPhone 4.

One way to overcome this handset compatibility issue is to use an external puck-like device, similar to a SPOT Connect or DeLorme inReach product, but offering voice and data capability in addition to simple messaging. This concept has been around for many years, and indeed was part of Craig McCaw’s new business plan when he bought ICO out of bankruptcy back in 2000: ICO told the FCC in its original ATC application in March 2001 that

“The use of already-permitted wireless technology such as Bluetooth or IEEE 802.11 could allow a whole range of consumer devices – standard terrestrial phones, PDAs, or laptop computers – to communicate with a satellite transceiver that houses the antennas, amplifiers, and other electronics unique and specific to the satellite link”.

Subscribers to my MSS research service heard 6 weeks ago about Iridium’s new handheld product, scheduled for launch at the end of the year, which is apparently exactly this puck-like device. It will be positioned to compete at the low end of the handheld market with a broadly comparable price to Thuraya’s SatSleeve (which was originally announced at $499 but is now selling for $599 to $799) and the Inmarsat and Globalstar handheld phones. I’m now told that Inmarsat is working on a similar device for release towards the end of next year, and meanwhile Globalstar has announced that it is “aiming to bring a $100 satellite device to market in 18 months time…to enter into a totally different market”.

I understand that Globalstar’s new device is likely to be the long-awaited two-way SPOT product, and may not be voice-capable like Iridium and Inmarsat’s new devices. It remains unclear whether the form factor will be a smartphone-connected puck (like SPOT Connect) or a standalone device: certainly the standalone device has sold much better for Globalstar to date, but equally well this might make it harder to expand beyond the current market of techie-focused backpackers and outdoorsy people (the vast majority of SPOT users are like me: 40-something relatively high income males with an interest in technology). Given the 18 month timetable stated by Globalstar, its also unclear whether this would be based on the new Hughes chipset or the current SPOT uplink plus a similar downlink channel, as the second generation ground segment upgrades are supposed to take about two more years to complete.

As Globalstar moves to raise its profile with investors, it seems the next stage will be a new round of fundraising (Globalstar noted in its 2013Q2 10-Q that “In June 2013, the Company entered into an agreement with Ericsson which deferred to September 1, 2013 or the close of a financing approximately $2.4 million in milestone payments scheduled under the contract”), presumably helping to reduce some of Thermo’s $85M backstop commitment (of which $40M had been provided by the end of July and $4.4M had been offset by receipts from termination of the 2009 share lending agreement). Indeed, it would be plausible for fundraising to go beyond this ~$35M level given the rise in Globalstar’s share price in the expectation of a positive outcome from the FCC, though it appears unlikely Globalstar will order more satellites anytime soon, given that the legal disputes with Thales are apparently still ongoing (Thales has “alleged that Thermo had failed to pay Thales $12,500,000 by December 31, 2012 as required by the Settlement Agreement“).

It seems Globalstar is highly confident that its NPRM will be issued by the time Chairman Clyburn leaves office, so it would be reasonable to suspect that this new financing is intended to take place in the next month or so, helping to cover payments of $20M+ due to Hughes between August 2013 and January 2014). Last week’s grand bargain over the 700MHz A&E blocks, DISH’s AWS-4 downlink waiver request and the H block auction, certainly indicates that I was too pessimistic in believing that Clyburn didn’t want to address spectrum issues and would leave these for Wheeler, and it would therefore now not be in the least bit surprising to see the Globalstar NPRM released at or around the time of the September FCC Open Meeting (when Clyburn will have what might be the last chance to trumpet her accomplishments as Chairman). Clyburn also appears less likely than Wheeler to pursue the “harm claim threshold” approach favored by the FCC’s TAC, which is good news for Globalstar in terms of how long it would take to issue an FCC order, although given that the FCC highlighted the speed with which it had moved to complete the DISH ruling last December (within 9 months of issuing the NPRM), it is still hard to imagine a final ruling on TLPS before early summer 2014.

So the key issues for Globalstar are likely to be how successfully it can build up its MSS business (note that the revenue projections given for the bank case in the new COFACE agreement generate just enough cash to cover debt, interest and capex payments through 2022 but little else) and more importantly whether Globalstar can find a partner to exploit its spectrum assets. We know about Amazon, but will there be other interest either from the cellular industry or (perhaps more plausibly) from non-traditional players? What are the best comparisons for spectrum valuation for TLPS and/or LTE authorization? I’ll be publishing my updated profile of Globalstar shortly and all of these issues will be discussed along with my revenue projections for the MSS business.

« Previous Page« Previous entries « Previous Page · Next Page » Next entries »Next Page »